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Abstract

Eosinophils are a minority circulating granulocyte classically viewed as being involved in host 

defense against parasites and promoting allergic reactions. However, a series of new regulatory 

functions for these cells have been identified in the past decade. During homeostasis, eosinophils 

develop in the bone marrow and migrate from the blood into target tissues following an eotaxin 

gradient, with IL-5 being a key cytokine for eosinophil proliferation, survival and priming. In 

multiple target tissues, eosinophils actively regulate a variety of immune functions through their 

vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in 

proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive 

immunity and also involves non-immune cells. Herein, we summarize recent findings regarding 

novel roles of murine and human eosinophils focused on interactions with other hematopoietic 

cells. We also review new experimental tools available and remaining questions to uncover a 

greater understanding of this enigmatic cell.
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Eosinophils are key innate regulator/effector cells

Eosinophils represent a minor component of circulating leukocytes and are generally 

considered to be terminally differentiated as post-mitotic cells, yet it is now appreciated that 

they can be long-lived multi-faceted granulocytes involved in a variety of regulatory 

functions. Like other granulocytes, eosinophils develop and differentiate in the bone marrow. 

Under homeostasis, eosinophils are distributed in the blood, lung, thymus, uterus, adipose 

tissues, mammary gland, spleen and the lamina propria of the gastrointestinal (GI) tract (1), 

indicating a physiological function in each organ. Although eosinophils outside of the bone 

marrow are deemed as mature, recent evidence suggests the existence of multiple tissue-

specific subtypes on the basis of distinct cell surface marker expression and functions (2–4). 

Driven by eosinophil-specific chemokines (primarily eotaxins) produced at baseline and 
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markedly up-regulated after a variety of stimuli (5), mature eosinophils are recruited from 

the circulation into their physiological locations and inflammatory sites, respectively. The 

cytokine IL-5, produced primarily by Type 2 T helpers (Th2) (6) and type 2 innate helper 

lymphoid cells (ILC2) (7), is a crucial cytokine for eosinophil differentiation, priming and 

survival (8). Conversely, eosinophils also serve as a source of a variety of cytokines and 

growth factors closely associated with multiple immuno-modulatory functions to be 

discussed later. Through their vast cytokine arsenal and engagement of cell contact, 

eosinophils modulate immune responses through an array of interactive and orchestrated 

mechanisms, in trans and cis fashions, by cellular and humoral mediators, in both innate and 

adaptive immune responses. Recently, a burgeoning body of evidence has uncovered several 

underappreciated roles for eosinophils that could modulate both the adaptive and innate arms 

of immunity. An essential goal of this chapter is to summarize the role of eosinophils in 

physiological and inflammatory processes in human and small mammal models in order to 

identify novel pharmacological targets for specific disease management.

Eosinophils interactively regulate multiple components of adaptive 

immunity

Eosinophils modulate lymphocyte recruitment and homeostasis

The canonical theory for eosinophil recruitment into the GI and the lung tissue is highlighted 

by the “T helper – Th2 cytokine – epithelium – eosinophil chemokine” axis (9) emphasizing 

the influence of lymphocytes on eosinophil recruitment. Specifically, antigen-experienced 

local Th2 cells produce the cytokine IL-5, which promotes eosinophil production, priming 

and survival, and IL-13, which induces local cells to produce eosinophil-specific 

chemokines—the eotaxins, which attract circulating eosinophils into their niche. There are 

three eotaxins identified, namely eotaxin 1, 2 and 3, all of which were shown to induce 

eosinophilia in asthma models and some human diseases. Meanwhile, the inflammatory 

environment (e.g. TNF-α) prepares endothelial cells for adhesion. However, the ability of 

eosinophils to influence lymphocyte recruitment and activity was not appreciated until 

several recent studies provided alternative evidence showing a pronounced reduction of Th2 

cytokines and effector T-cell recruitment in eosinophil-deficient mice, a deficit fully rescued 

by eosinophil re-introduction (10), suggesting that eosinophils are critical for T-cell homing 

in the lung. Indeed, in an Il5−/− background, the airway hyperreactivity and mucus 

production associated with experimental asthma were shown to be functions of both T-cell 

and eosinophil factors, as each alone was insufficient for induction of allergic airway 

inflammation (11). Therefore, at least in a rodent pulmonary system, eosinophils may 

interact with lymphocytes in a bidirectional manner rather than passively responding to 

chemotactic and priming signals. Consistent with this theory, in eosinophil-deficient 

ΔdblGATA-1 mice, reduced Peyer’s patch development and T helper cell cytokine 

production was observed, highlighting the promoting role of eosinophils on lymphocyte 

homeostasis (10, 12, 13). Extending this paradigm to B cells, it has recently become 

appreciated that bone marrow eosinophils co-localize with plasma cells during their 

maturation, secrete the cytokines APRIL and IL-6 and contribute to the survival of bone 

marrow plasma cells, whose death is augmented in eosinophil-deficient ΔdblGATA-1 mice 

(14). In addition, the B cell process of IgA class switching was recently found to be 
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positively regulated by GI eosinophils in the intestinal tissue (12, 13). Finally, recent studies 

have uncovered a novel role for eosinophils in promoting B cell proliferation upon 

eosinophil activation in mice, and a positive correlation between blood eosinophil and B cell 

counts in humans (15). In the light of these findings, a systemic scanning of lymphocyte 

phenotypes and functions in eosinophil-deficient mice (not restricted to the pulmonary 

system) should be prioritized.

Eosinophils behave as antigen-presenting cells

Other than regulating lymphocyte recruitment and function, it is now appreciated that 

eosinophils have the capacity to present antigen to T cells. This topic stems from the original 

findings that GM-CSF–treated eosinophils have a “non-professional” antigen presentation 

function in vitro as shown by their capacity to induce antigen-specific T-cell clone 

proliferation (16). Eosinophils, after allergen exposure, express the machinery for antigen 

presentation and a full set of co-stimulation molecules, including MHC class II, CD80, 

CD86, CD9, CD28 and CD40, at the protein level (17, 18). Eosinophils labeled in the airway 

lumen migrate to the draining lymph node, reaching the T-cell proliferation zone, in a 

process that is independent of the eotaxin receptor CCR3. Moreover, these antigen-

experienced eosinophils promote antigen-specific T-cell proliferation ex vivo, suggesting an 

antigen-presenting cell (APC) behavior. Antigen (OVA)-loaded and GM-CSF–treated 

eosinophils, when instilled intratracheally, promote the proliferation of adoptively 

transferred OVA-specific T-cell clones, which is accompanied by T-cell CD69 upregulation 

and IL-4 production and T cell/eosinophil co-localization in the draining lymph node (19). 

In a murine allergic asthma model, peripheral eosinophil recruitment into the lymph node is 

required for antigen-specific T-cell proliferation in situ (20), In addition to the pulmonary 

system, murine studies have also demonstrated the antigen-presenting capacity of 

eosinophils in threadworm (21) and fungus infections (22). Moreover, considering that 

eosinophils are potent cytokine producers and regulators of humoral immunity and are 

usually isolated from a population rich in professional APCs, the direct evidence for the 

physical T cell/eosinophil interaction (e.g. by confocal or intravital microscopy) is needed. 

Conceivably, eosinophil-deficient or eosinophil-specific (23) MHC II–deficient mice would 

serve as the best tools to substantiate this interaction.

Eosinophils, alone or via dendritic cells, drive Th2 polarization

Eosinophils are capable of driving a Th2 response in multiple ways. A crucial Th2 

characteristic of eosinophils is their capacity to produce canonical Th2 cytokines (IL-4, IL-5 

and IL-13) upon stimulation (1, 24). In addition, eosinophils isolated from patients with 

asthma may sustain Th2 polarization by maintaining a high intracellular indoleamine 2,3-

dioxygenase (IDO) level, with IDO being a Th2 differentiation regulator (25). In mice, 

eosinophils are required for dendritic cells (DCs) and T cells to initiate Th2 inflammation in 

the lung (20). Emerging evidence also suggests that eosinophils suppress Th17 and Th1 

responses via DC regulation, which will be further discussed below.

As a messenger between innate and adaptive immunity, eosinophils engage in direct cross-

talk with DCs. Although eosinophils themselves are able to present antigen to T cells de 

novo, the well-recognized positive regulation by eosinophils on professional APCs should be 
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emphasized as well. Conventional myeloid DC (mDC, immunotyped as IL-12, Toll-like 

receptor 2 [TLR2] and TLR4 positive) can ingest the eosinophil granule protein major basic 

protein (MBP) in vivo, and the physical interaction of human blood eosinophils and DCs, 

revealed by confocal imaging, results in DC maturation in the presence of the bacterial 

pathogen-associated molecular pattern (PAMP) CpG-C (26). In general, the presence of 

either eosinophils or DCs in tumor tissue is an indicator of positive prognosis and a negative 

prognosis for allograft, further suggesting the role of eosinophils in antigen presentation, 

either alone or in combination with the DCs (27, 28). Furthermore, the eosinophil granule 

protein “eosinophil derived neurotoxin” (EDN), which is a member of the RNase family, has 

been shown to be chemotactic factor for mDC (29), triggering mDC cytokine production 

(30). Moreover, EDN specifically binds to TLR2 on DCs as an endogenous ligand triggering 

MyD88-dependent pathway in TLR-transfected HEK293 cells (31). Following OVA 

immunization in vivo, co-immunization with EDN potentiates OVA-specific IgG1 (a Th2 Ig) 

production, but not IgG2 and IgG3. Splenocytes from TLR2+/+ mice immunized with OVA 

in the presence of EDN primarily produce IL-5, IL-6, IL-10 and IL-13 (Th2 cytokine 

signature), whereas the TLR2−/− splenocytes (lacking the signal through EDN) primarily 

produce interferon γ (31). Collectively, these findings indicate that specific eosinophil 

products can serve as Th2 adjuvants via DC regulation, at least partially contributing to the 

Th2-promoting role of eosinophils, and facilitate maturation of other immunocytes including 

the lineage commitment of eosinophils themselves (32), although more studies are needed to 

substantiate these novel observations.

In a murine OVA-induced asthma model, cellular trafficking of eosinophils into the lung 

lymphatic compartment is a prerequisite for mDC accumulation in draining lymph nodes 

(20) and, consequently, for allergen-specific effector T-cell proliferation. Importantly, this 

pulmonary Th2 enhancement through DC regulation is not MHC II (classical antigen 

presentation complex) or CCR7 (classical lymph node homing signal) dependent (20). 

Whether the DC regulation is through eosinophil cytokine secretion or cellular interaction 

remains to be resolved. It should also be noted that most of the studies about DC regulation 

are confined to the lung and use allergic asthma models; the generalization of these 

processes in other tissues is ripe for investigation.

Regulation of T-cell development in the thymus

The thymus is one of several organs where eosinophils are readily found under homeostatic 

conditions. Eosinophils migrate into the thymus during the neonatal period and wane after 

adolescence (33). Eosinophils are present in the thymus under homeostasis and have a 

unique CD11c+CD11b+CD44highMHC II lowSSChigh phenotype, distinct from circulating 

eosinophils. Thymus-bound eosinophils exhibit an activated phenotype, as shown by 

expression of several surface activation markers, including CD25, CD69 and mRNA for Th2 

cytokines IL-4, IL-5, IL-13 and GM-CSF (34). Initial data suggest that eosinophils have a 

role in MHC I–dependent negative selection and may induce T-cell apoptosis by free 

radicals to facilitate negative selection. Eosinophils in the thymus are Indoleamine 2,3-

dioxygenase(IDO)-positive (25) and correlate with local Th2 cytokine levels (33), 

suggesting a Th1/Th2-regulating role within the thymus, possibly via DC regulation.
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Taken together, eosinophils actively orchestrate a chain response in adaptive immunity at 

earlier points than previously appreciated, as evidenced by the lymphocyte deficiency and 

impaired local Th2 cytokine profile seen in eosinophil-deficient mice. Notably, eosinophils 

also possess a robust capacity to regulate a variety of cell types in the non-adaptive immune 

system, which will be discussed in the following sections.

Eosinophils directly participate in innate recognition and actively regulate 

other aspects of non-adaptive immunity

Unique PAMP receptor repertoire for specific pathogen recognition and clearance

Despite early studies showing that eosinophils are able to engulf foreign pathogens, it is now 

generally accepted that they are not directly involved in cellular phagocytosis. Rather, 

eosinophils rapidly release (catapult) their mitochondrial DNA to confine bacterial infection 

in the GI mucosa (35). Furthermore, it was recently found that the eosinophil extracellular 

DNA trap formation after cytolysis is also accompanied by release of cell-free secretion-

competent granules in a NADPH oxidase–dependent fashion (36), further strengthening the 

evidence of the pathogen-combating function of human eosinophils. In addition, evidence 

exists that eosinophils have anti-parasite activity, mediated by release of their cytotoxic 

granule proteins (37). The capacity of eosinophils to release anti-parasite mediators has been 

shown in multiple studies demonstrating the deposition of eosinophil granule proteins 

around parasites (38, 39). Gene deletion studies in mice have also indicated that disruption 

of EPO or MBP results in significantly higher worm burdens compared to wildtype mice 

(40). The key activating signal for promoting these responses is not agreed upon yet, but 

multiple lines of evidence suggest that functional Fc receptors on eosinophils (allowing 

mediation of antibody-dependent cellular cytotoxicity), complement receptors and several 

receptors for pathogen/damage-associated molecular patterns (PAMP/DAMP) may 

contribute (41, 42).

As to PAMP recognition, eosinophils express several functional TLR, including TLR1, 2, 3, 

5, 6, 7, and 9 (43, 44), and activation of these receptors by microbes and pathogens leads to 

intracellular signal activation and cytokine production by eosinophils (45). These findings 

not only imply that eosinophils may take part in PAMP recognition and subsequent 

defensive processes but also suggest a potential mechanism explaining the exacerbation of 

allergy inflammation by bacterial/viral infection (46). Notably, human data regarding 

eosinophil TLR2 and TLR4 expression exhibits a certain degree of heterogeneity associated 

with atopic and eosinophilia status (47).

Specifically regarding viral PAMP recognition, TLR7, which recognizes viral ssRNA, is 

expressed in human eosinophils with intracellular signaling capacity (43). In addition to 

their pro-inflammatory roles in asthma, eosinophils are tightly associated with anti-viral 

activity in a variety of systems. EDN has been shown to possess an inhibitory effect on HIV 

(48), and eosinophil-tropic IL-5 transgenic mice have a more rapid, MyD88-dependant 

clearance of respiratory syncytial virus (RSV) compared to wild-type mice (49). Likewise, 

in pulmonary viral infection, eosinophils cooperate with macrophages to prevent the 

infection from spreading to uninfected epithelial cells (50), suggesting a positive role of 
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eosinophils in combatting viral infections through TLRs. However, in the context of human 

rhinovirus (HRV), eosinophils enhanced the viral load by inhibiting epithelial interferon 

production (51), indicating the complexity in eosinophil functions in viral infections.

Currently, a large portion of our knowledge regarding eosinophil-viral interactions comes 

from RSV. At a mechanistic level, it is not clear how the virus initiates eosinophilia and how 

the eosinophil-viral interactions are regulated. Further insights are expected by broadening 

the scope to other organs/systems (such as the GI), and investigating other types of viruses 

may provide further depth, such as the rotavirus infection in mouse and human GI tract (52).

Eosinophil: a key orchestrator of asthma and other allergic diseases

In addition to the Th2-tilted cytokine production and DC induction discussed earlier in the 

adaptive immunity section, eosinophils also contribute to asthma pathogenesis by serving as 

a key orchestrator. Indeed, genetic variants affecting eosinophilia at least in part, such as 

variants in WDR36, ST2, IL33 and MYB, have been associated with morbidity of atopic 

asthma (53). Importantly, major eosinophil granule products are composed of four bio-active 

cytotoxic proteins, namely MBP, eosinophil peroxidase (EPO), eosinophil cationic protein 

(ECP) and EDN. In human lung, eosinophil products can be detected in macrophage 

intracellular compartments, contributing to macrophage activation. EPO has been shown to 

positively regulate macrophage phagocytosis (54). MBP has been shown to disrupt GI 

barrier function, induce airway smooth muscle contraction and elicit mast-cell / basophil 

degranulation (55). As for the interaction with lung epithelium, emerging evidence suggests 

that eosinophils regulate the airway epithelial cytokine profile and permeability (51). 

Multiple lines of evidence also suggest that eosinophils take an active role in epithelial 

damage and basal membrane hyper-proliferation (56, 57). Additionally, the observation that 

human eosinophils induce mucus production via EGF activation (58) underlines the 

interaction between eosinophils and asthmatic lung epithelium. Notably, with the vital role 

of mast cells in asthma increasingly revealed (59), the close interaction between eosinophils 

and mast cells are highly likely to be important as well, which will be discussed in the next 

sub-section.

In human and murine asthmatic lung, eosinophils are generally recognized as a contributor 

to airway hyperreactivity. Eosinophils are sources of IL-5 and GM-CSF, thereby promoting 

their own survival in an autocrine fashion (60), but the major source of IL-5 is believed to be 

the Th2 cells or ILC2 cells. The causal relationship between asthma and eosinophils has 

been best elucidated by a series of anti–IL-5 studies in human asthma. Although early anti–

IL-5 studies yielded controversial results, more recent studies focusing on severe 

eosinophilic asthmatic phenotypes, as well as sputum eosinophil count, clearly demonstrated 

the efficacy of humanized anti–IL-5 therapy (mepolizumab), representing an important 

treatment avenue in an area of unmet clinical need (61–63). From an independent 

development perspective, another anti-IL-5 humanized antibody, reslizumab, also 

convincingly demonstrated efficacy in severe asthma management including improvements 

in lung function, significantly reducing the asthmatic exacerbation frequency in two 

independent phase III trials (64). Interestingly, the optimal effect was achieved in 

inadequately controlled asthma with elevated blood eosinophil counts. Of note, with the 
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demonstrated efficacy during the late phase development, both anti-IL-5 humanized 

antibodies have now been FDA-approved for clinical management of asthma. (65, 66). 

Human eosinophils have been shown to directly activate neutrophils by releasing ENA-78/

CXCL5 (67). Additionally, MBP stimulates IL-8 secretion by neutrophils, with regulation 

occurring at both transcriptional and post-transcriptional levels (68). These can lead to 

neutrophilia and neutrophil activation, which is also a critical component of asthma (69). In 

the presence of GM-CSF, eosinophils express basal levels of NOTCH ligand (60, 70), 

capable of regulating both innate and adaptive immunity, including macrophage polarization 

(71) and cytokine-independent, T-cell lineage commitment (72), respectively, suggesting 

another regulatory function of lung eosinophils in asthma.

Eosinophils were identified as the key factor for human asthma exacerbation (73) and lung 

connective tissue remodeling, which has been attributed to granule products such as MBP 

and cytokines such as TGF-β. Recent research in patients with asthma indicates that 

eosinophils actively participate in the lung tissue fibrosis and remodeling, linking 

eosinophils to the potential etiology that commonly leads to progressive worsening of 

quality of life (74) (75). In addition to the well-known fibrogenic molecule TGF-β being 

produced by eosinophils, in vitro evidence indicated that the eosinophil product ECP 

induces lung fibroblast migration (76) and stimulates them to produce TGF-β in vitro (77). 

Interestingly, the tissue-remodeling capacity of GI eosinophils seems to be suppressed by 

their surface inhibitory receptors, such as CD172a (3), implying a promising potential to 

suppress this adverse effect.

Eosinophil–mast-cell cross-talk

As pivotal components of allergic hypersensitivity, eosinophils and mast cells mutually 

potentiate each other in several allergic disorders, such as asthma and eosinophilic 

esophagitis (EoE) (78). While mast cells support the survival and activation of eosinophils 

by secreting IL-5, eosinophil MBP directly activates mast cells and basophils, triggering the 

release of an arsenal of allergic mediators and cytokines, including histamine and TNF-α. In 

the murine system, ECP and EPO also activate allergic mediator release from mast cells (1). 

Conversely, mast cells are the major sources of prostaglandin D2 (PGD2) (79, 80), a key 

inflammation mediator whose receptor, CRTH2/CD294, is robustly expressed on rodent and 

human eosinophils (81, 82). This transmembrane G-protein coupled receptor has the dual 

functions of eosinophil-activating receptor and chemotaxis receptor. Exposure of eosinophils 

to PGD2 induces rapid morphological changes, intracellular calcium flux, chemotaxis and 

cellular degranulation of human eosinophils. CRTH2 is known to be expressed on Th2 cells, 

whose Th2 cytokines will also promote eosinophilia (83). The eosinophil–mast-cell 

interaction was highlighted by a recent clinical study showing that in human patients with 

the allergic GI disorder EoE, eosinophils are physically coupled with mast cells as assessed 

by immunohistochemistry (84) and are a major source of the mast cell–supporting cytokine 

IL-9 (85). In vitro ultra-structural evidence also indicated that eosinophils and mast cells 

form cell-cell contact and exchange their products for reciprocal activation (84, 86). 

Importantly, anti–IL-5 therapy concomitantly reduced both eosinophils and mast cell 

numbers (84), indicating that eosinophils promote mastocytosis in human allergic disease. 

Of note, in eosinophilic gastrointestinal disorders (EGIDs, e.g. EoE), despite the fact that 
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eosinophil migration is relatively better understood, it remains a mystery how circulating 

mast-cell precursors migrate into tissue and become mature/activated. The reciprocal 

eosinophil–mast-cell potentiation may be critical to understanding the pathogenesis of 

allergic disease and developing new intervention platforms for human allergic disorders.

In summary, eosinophils serve as recognition cells of certain unique PAMPs, playing a vital 

role in innate defense against viral, parasitic and bacterial infection. Aside from the Th2 

induction and T cell/DC interactions, the regulating role of eosinophil in asthma can be 

reflected by its multi-faceted interaction with a myriad of cell types in the lung and by its 

robust tissue-remodeling capacity.

Some new and intriguing areas of research about eosinophils

Paradoxical roles in tissue destruction and repair

Eosinophils are equipped with a tissue damage–sensing system, including several histamine 

receptors (HR1, HR2, and HR4) (87, 88), which enables them to release multiple tissue-

repairing molecules. Damaged epithelial cells from different tissue origins directly stimulate 

eosinophil secretion of TGF-β and fibroblast growth factor (FGF) (89). Indeed, the 

eosinophil is capable of producing TGF-β, TGF-α, epidermal growth factor (EGF) (90), 

FGF (89), platelet-derived growth factor (PDGF) (91) and vascular-endothelial growth factor 

(VEGF) (92), all of which have well-recognized beneficial roles in tissue repair (8). The 

tissue repair function of eosinophils was substantiated by a recent study showing that 

eosinophil IL-4 production is necessary for hepatocyte regeneration after hepatectomy or 

toxin injury, as this effect is abolished in eosinophil-deficient mice (93). Although it was 

proposed that eosinophils promote wound healing due to growth factor production (90, 94), 

Il5 over-expressing mice have a delayed wound healing due to augmented inflammatory 

responses and delayed matrix synthesis (95, 96), suggesting that the reparative function of 

eosinophils is tonically modulated.

Adipose tissue residential eosinophils regulate local cytokine milieu and glucose 
homeostasis

Recent studies indicated that eosinophils are tightly associated with alternatively activated 

macrophages (M2) (97, 98), whereas obesity is interpreted as an uncontrolled chronic 

inflammatory response associated with dysregulated macrophage populations in the adipose 

tissue (99). Interestingly, with eosinophils found as a residential cell type in the visceral 

adipose tissue under homeostasis, a recent study has uncovered unexpected, non-redundant 

roles of eosinophils in adipose tissue macrophage polarization and glucose metabolism 

(100). In murine models, eosinophils have been proven to be critical for maintaining adipose 

tissue M2 macrophages as a major contributor of IL-4, a key factor for M2 polarization. In 

the absence of eosinophils, mice are prone to develop obesity, glucose intolerance and 

insulin resistance (100). Notably, the eosinophilia induced by parasitic infection has been 

shown to enhance glucose tolerance, reinforcing a regulatory effect of eosinophils on 

metabolism. The field is awaiting studies performed in human adipose tissue demonstrating 

similar regulatory roles of eosinophils on macrophage subtypes and body metabolism.
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Eosinophils may contribute to neurologic symptoms by regulating neural activity

Notably, several studies suggest a link between eosinophils and neuronal homeostasis. First, 

peripheral dorsal root ganglia (DRG) and airway neurons produce eotaxins to chemoattract 

eosinophils into their niche (101, 102). Furthermore, eosinophils are capable of producing 

nerve growth factor (NGF) and neurotrophins (e.g. NT-3), at the mRNA and protein level, to 

directly regulate neuronal activity. This constitutive activity can be further boosted by Fc 

receptor–mediated eosinophil activation (103). In vitro, both murine and human eosinophils 

promoted DRG neuron branching, an effect independent of physical contact (101) and a 

plausible explanation for the cutaneous nerve outgrowth and associated neurologic 

symptoms in atopic dermatitis. EGIDs have pronounced tissue-specific eosinophilia, with 

expression of several neuro-filament elements being robustly upregulated in EoE (104). 

Notably, a vast majority of patients with EoE experience a certain degree of neuropathy and 

somato-sensory alterations (105). Additionally, the neurotrophins present in the asthmatic 

lung promote the survival of airway eosinophils (106), forming a potential vicious cycle. It is 

therefore conceivable that eosinophils may directly contribute to these neuronal 

dysregulations. These observations may at least partially explain the neurologic 

hypersensitivity in a myriad of allergic diseases, such as asthma, atopic dermatitis and 

allergic rhinitis (107, 108), and in some eosinophilic disorders, such as EGIDs (109, 110). 

Although the neural hyperplasia in atopic dermatitis has been well documented, the 

anomalous neurologic changes in EGIDs have yet to be characterized. In a guinea pig model 

of asthma, it is notable that eosinophils migrate into the nerves in a CCR3-dependent fashion 

(102) (especially the vagal nerve) and release MBP (111), which serves as a muscarinic 

receptor 2 antagonist (112) that enhances the acetylcholine release and thereby exacerbates 

bronchoconstriction. In human asthma and EoE, eosinophils localize near nerve endings 

with extracellular MBP adhered to the nerve endings, suggesting a neuronal regulatory role 

of eosinophils (113).

The enigmatic functions of GI eosinophils

Rodent and human GI tissue harbors the largest reservoir of eosinophils compared to other 

anatomical compartments including blood and bone marrow. Although intestinal eosinophils 

are extensively present in the lamina propria of the full length of the GI tract, their function 

is the least understood compared to eosinophils in other organs. From a limited number of 

studies, eosinophils in the GI compartment seem to adopt a unique surface expression profile 

to accommodate their GI-specific functions (2). For reasons that are not fully comprehended, 

GI eosinophil turnover rate is much slower than that of the lung and blood eosinophils, as 

assessed by BrdU incorporation (114). It was also found that signaling through the common 

γ chain receptor is necessary for the longer survival of GI eosinophils (114), but the 

functions of these cells still remain largely unknown. Recently, utilizing the eosinophil-

deficient ΔdblGATA-1 and PHIL mice, multiple research groups showed that GI eosinophils 

promote the generation and production of IgA-producing plasma cells in the GI tract (12, 

13). These studies also identified that eosinophils have novel and profound functions in the 

GI tract, such as promoting IgA class-switching, enhancing intestinal mucus secretions, 

determining intestinal micro-biota and inducing the development of Peyer’s patches (12, 13). 

The functional exploration of GI eosinophils has just started. With conditional, eosinophil 

lineage–deficient mice and genome-wide screening methods become increasingly available, 
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key functions of GI eosinophils in homeostasis and disease contexts, such as EGIDs, are 

soon to be discovered.

Perspectives

With advancing technology and accumulating knowledge, the understanding of eosinophils 

has changed from a simple post-mitotic cell with limited functional capacity in parasite 

infection and allergy to a cell type that is actively involved in orchestrating a variety of 

mucosal and non-mucosal immune responses at baseline and during a variety of disease 

responses (see Figure 1 for schematic summary illustration). With more novel functions of 

eosinophils being actively investigated and the increasing number of murine models 

available, rapid advances in further understanding this cell type are likely to occur in the 

near future (summarized in Figure 2). The recent generation of the EPO–diphtheria toxin 

eosinophil-depleted mice (115) and the MBP-1 EPX –disrupted eosinophil progenitor–

deficient mice (23) is expected to provide a complementary and independent means to assess 

the participation of eosinophils in a variety of responses. The interaction network between 

eosinophils and the recently identified IL-33–ST2 axis provides an opportunity to further 

understand the activation of this cell type in innate allergic responses. The interplay between 

eosinophils and newly identified ILC2 cells (116), which produces abundant amount of IL-5 

and primarily resides in non-lymphoid tissues (7), is a particularly promising new finding 

that may explain the key source of eosinophilopoetins and early involvement of eosinophils 

in acute injury responses. The recent generation of an eosinophil-specific gene disruption 

model, the EPO-driven Cre expression mouse (117), is likely to facilitate the investigation of 

underappreciated functions of eosinophils. As to advancing asthma management strategy, as 

illustrated by the success of the anti–IL-5 studies, eosinophil-suppressive therapy represents 

an effective and well-tolerated treatment that reduces the possibility of asthma exacerbation 

and will likely get further approval in the market and more clinical and research attention. 

Collectively, these studies and the implications of their findings support the likelihood for an 

emerging and expanding body of data concerning the function and role of eosinophils in 

immunity.
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Figure 1. Schematic summary of eosinophil-tropic signaling and eosinophil cellular and humoral 
regulatory functions
EOS, eosinophils; IL-5, interleukin 5; Th2, T helper cell type 2, ILC2, innate lymphoid cell 

type 2; Mast, mast cells; Epi, epithelium; ADCC, antibody-dependent cell-mediated 

cytotoxicity; Ag, antigen; PAMP: pathogen-associated molecular pattern; TLRs, toll-like 

receptors; DCs; dendritic cells; PMN, polymorphonuclear leukocyte (neutrophil).
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Figure 2. Research tool summary and questions to be answered
Although recent advances provide tremendous insight into the regulatory functions of 

eosinophils, important questions remain. With the increasing number of tools available 

(upper panel), progress in the listed areas (lower panel, outside blue boxes), in the light of 

key eosinophil regulation elements (inside ovals) will be interesting and crucial to 

understanding the still enigmatic function of eosinophils. EOS, eosinophils; EPO-DT, EPO-

driven diphtheria toxin expression mice; EMT, epithelial-mesenchymal transition; DAMP, 

damage-associated molecular pattern; PAMP, pathogen-associated molecular pattern; miR, 

microRNA; GOI, gene of interest; Tg, transgenic; (D)KO, (double)knockout.
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